/* NeuQuant Neural-Net Quantization Algorithm * ------------------------------------------ * * Copyright (c) 1994 Anthony Dekker * * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. * See "Kohonen neural networks for optimal colour quantization" * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. * for a discussion of the algorithm. * * Any party obtaining a copy of these files from the author, directly or * indirectly, is granted, free of charge, a full and unrestricted irrevocable, * world-wide, paid up, royalty-free, nonexclusive right and license to deal * in this software and documentation files (the "Software"), including without * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons who receive * copies from any such party to do so, with the only requirement being * that this copyright notice remain intact. */ // Ported to Java 12/00 K Weiner using System; using UnityEngine; namespace uGIF { public class NeuQuant { static readonly int netsize = 256; /* number of colours used */ /* four primes near 500 - assume no image has a length so large */ /* that it is divisible by all four primes */ static readonly int prime1 = 499; static readonly int prime2 = 491; static readonly int prime3 = 487; static readonly int prime4 = 503; static readonly int minpicturebytes = (3 * prime4); /* minimum size for input image */ /* Program Skeleton ---------------- [select samplefac in range 1..30] [read image from input file] pic = (unsigned char*) malloc(3*width*height); initnet(pic,3*width*height,samplefac); learn(); unbiasnet(); [write output image header, using writecolourmap(f)] inxbuild(); write output image using inxsearch(b,g,r) */ /* Network Definitions ------------------- */ static readonly int maxnetpos = (netsize - 1); static readonly int netbiasshift = 4; /* bias for colour values */ static readonly int ncycles = 100; /* no. of learning cycles */ /* defs for freq and bias */ static readonly int intbiasshift = 16; /* bias for fractions */ static readonly int intbias = (((int)1) << intbiasshift); static readonly int gammashift = 10; /* gamma = 1024 */ static readonly int gamma = (((int)1) << gammashift); static readonly int betashift = 10; static readonly int beta = (intbias >> betashift); /* beta = 1/1024 */ static readonly int betagamma = (intbias << (gammashift - betashift)); /* defs for decreasing radius factor */ static readonly int initrad = (netsize >> 3); /* for 256 cols, radius starts */ static readonly int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */ static readonly int radiusbias = (((int)1) << radiusbiasshift); static readonly int initradius = (initrad * radiusbias); /* and decreases by a */ static readonly int radiusdec = 30; /* factor of 1/30 each cycle */ /* defs for decreasing alpha factor */ static readonly int alphabiasshift = 10; /* alpha starts at 1.0 */ static readonly int initalpha = (((int)1) << alphabiasshift); int alphadec; /* biased by 10 bits */ /* radbias and alpharadbias used for radpower calculation */ static readonly int radbiasshift = 8; static readonly int radbias = (((int)1) << radbiasshift); static readonly int alpharadbshift = (alphabiasshift + radbiasshift); static readonly int alpharadbias = (((int)1) << alpharadbshift); /* Types and Global Variables -------------------------- */ Color32[] thepicture; /* the input image itself */ int lengthcount; /* lengthcount = H*W*3 */ int samplefac; /* sampling factor 1..30 */ // typedef int pixel[4]; /* BGRc */ int[][] network; /* the network itself - [netsize][4] */ int[] netindex = new int[256]; /* for network lookup - really 256 */ int[] bias = new int[netsize]; /* bias and freq arrays for learning */ int[] freq = new int[netsize]; int[] radpower = new int[initrad]; /* radpower for precomputation */ /* Initialise network in range (0,0,0) to (255,255,255) and set parameters ----------------------------------------------------------------------- */ public NeuQuant (Color32[] thepic, int len, int sample) { int i; int[] p; thepicture = thepic; lengthcount = len; samplefac = sample; network = new int[netsize][]; for (i = 0; i < netsize; i++) { network [i] = new int[4]; p = network [i]; p [0] = p [1] = p [2] = (i << (netbiasshift + 8)) / netsize; freq [i] = intbias / netsize; /* 1/netsize */ bias [i] = 0; } } byte[] ColorMap () { byte[] map = new byte[3 * netsize]; int[] index = new int[netsize]; for (int i = 0; i < netsize; i++) index [network [i] [3]] = i; int k = 0; for (int i = 0; i < netsize; i++) { int j = index [i]; map [k++] = (byte)(network [j] [0]); map [k++] = (byte)(network [j] [1]); map [k++] = (byte)(network [j] [2]); } return map; } /* Insertion sort of network and building of netindex[0..255] (to do after unbias) ------------------------------------------------------------------------------- */ void Inxbuild () { int i, j, smallpos, smallval; int[] p; int[] q; int previouscol, startpos; previouscol = 0; startpos = 0; for (i = 0; i < netsize; i++) { p = network [i]; smallpos = i; smallval = p [1]; /* index on g */ /* find smallest in i..netsize-1 */ for (j = i + 1; j < netsize; j++) { q = network [j]; if (q [1] < smallval) { /* index on g */ smallpos = j; smallval = q [1]; /* index on g */ } } q = network [smallpos]; /* swap p (i) and q (smallpos) entries */ if (i != smallpos) { j = q [0]; q [0] = p [0]; p [0] = j; j = q [1]; q [1] = p [1]; p [1] = j; j = q [2]; q [2] = p [2]; p [2] = j; j = q [3]; q [3] = p [3]; p [3] = j; } /* smallval entry is now in position i */ if (smallval != previouscol) { netindex [previouscol] = (startpos + i) >> 1; for (j = previouscol + 1; j < smallval; j++) netindex [j] = i; previouscol = smallval; startpos = i; } } netindex [previouscol] = (startpos + maxnetpos) >> 1; for (j = previouscol + 1; j < 256; j++) netindex [j] = maxnetpos; /* really 256 */ } /* Main Learning Loop ------------------ */ void Learn () { int i, j, b, g, r; int radius, rad, alpha, step, delta, samplepixels; int pix, lim; if (lengthcount < minpicturebytes) samplefac = 1; alphadec = 30 + ((samplefac - 1) / 3); var p = thepicture; pix = 0; lim = lengthcount; samplepixels = lengthcount / (3 * samplefac); delta = samplepixels / ncycles; alpha = initalpha; radius = initradius; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (i = 0; i < rad; i++) radpower [i] = alpha * (((rad * rad - i * i) * radbias) / (rad * rad)); //fprintf(stderr,"beginning 1D learning: initial radius=%d\n", rad); if (lengthcount < minpicturebytes) step = 3; else if ((lengthcount % prime1) != 0) step = 3 * prime1; else { if ((lengthcount % prime2) != 0) step = 3 * prime2; else { if ((lengthcount % prime3) != 0) step = 3 * prime3; else step = 3 * prime4; } } i = 0; while (i < samplepixels) { b = (p [pix].r & 0xff) << netbiasshift; g = (p [pix].g & 0xff) << netbiasshift; r = (p [pix].b & 0xff) << netbiasshift; j = Contest (b, g, r); Altersingle (alpha, j, b, g, r); if (rad != 0) Alterneigh (rad, j, b, g, r); /* alter neighbours */ pix += step; if (pix >= lim) pix -= lengthcount; i++; if (delta == 0) delta = 1; if (i % delta == 0) { alpha -= alpha / alphadec; radius -= radius / radiusdec; rad = radius >> radiusbiasshift; if (rad <= 1) rad = 0; for (j = 0; j < rad; j++) radpower [j] = alpha * (((rad * rad - j * j) * radbias) / (rad * rad)); } } } /* Search for BGR values 0..255 (after net is unbiased) and return colour index ---------------------------------------------------------------------------- */ public int Map (int b, int g, int r) { int i, j, dist, a, bestd; int[] p; int best; bestd = 1000; /* biggest possible dist is 256*3 */ best = -1; i = netindex [g]; /* index on g */ j = i - 1; /* start at netindex[g] and work outwards */ while ((i < netsize) || (j >= 0)) { if (i < netsize) { p = network [i]; dist = p [1] - g; /* inx key */ if (dist >= bestd) i = netsize; /* stop iter */ else { i++; if (dist < 0) dist = -dist; a = p [0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p [2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p [3]; } } } } if (j >= 0) { p = network [j]; dist = g - p [1]; /* inx key - reverse dif */ if (dist >= bestd) j = -1; /* stop iter */ else { j--; if (dist < 0) dist = -dist; a = p [0] - b; if (a < 0) a = -a; dist += a; if (dist < bestd) { a = p [2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; best = p [3]; } } } } } return (best); } public byte[] Process () { Learn (); Unbiasnet (); Inxbuild (); return ColorMap (); } /* Unbias network to give byte values 0..255 and record position i to prepare for sort ----------------------------------------------------------------------------------- */ void Unbiasnet () { int i; for (i = 0; i < netsize; i++) { network [i] [0] >>= netbiasshift; network [i] [1] >>= netbiasshift; network [i] [2] >>= netbiasshift; network [i] [3] = i; /* record colour no */ } } /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|] --------------------------------------------------------------------------------- */ void Alterneigh (int rad, int i, int b, int g, int r) { int j, k, lo, hi, a, m; int[] p; lo = i - rad; if (lo < -1) lo = -1; hi = i + rad; if (hi > netsize) hi = netsize; j = i + 1; k = i - 1; m = 1; while ((j < hi) || (k > lo)) { a = radpower [m++]; if (j < hi) { p = network [j++]; p [0] -= (a * (p [0] - b)) / alpharadbias; p [1] -= (a * (p [1] - g)) / alpharadbias; p [2] -= (a * (p [2] - r)) / alpharadbias; } if (k > lo) { p = network [k--]; p [0] -= (a * (p [0] - b)) / alpharadbias; p [1] -= (a * (p [1] - g)) / alpharadbias; p [2] -= (a * (p [2] - r)) / alpharadbias; } } } /* Move neuron i towards biased (b,g,r) by factor alpha ---------------------------------------------------- */ void Altersingle (int alpha, int i, int b, int g, int r) { /* alter hit neuron */ int[] n = network [i]; n [0] -= (alpha * (n [0] - b)) / initalpha; n [1] -= (alpha * (n [1] - g)) / initalpha; n [2] -= (alpha * (n [2] - r)) / initalpha; } /* Search for biased BGR values ---------------------------- */ int Contest (int b, int g, int r) { /* finds closest neuron (min dist) and updates freq */ /* finds best neuron (min dist-bias) and returns position */ /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ /* bias[i] = gamma*((1/netsize)-freq[i]) */ int i, dist, a, biasdist, betafreq; int bestpos, bestbiaspos, bestd, bestbiasd; int[] n; bestd = ~(((int)1) << 31); bestbiasd = bestd; bestpos = -1; bestbiaspos = bestpos; for (i = 0; i < netsize; i++) { n = network [i]; dist = n [0] - b; if (dist < 0) dist = -dist; a = n [1] - g; if (a < 0) a = -a; dist += a; a = n [2] - r; if (a < 0) a = -a; dist += a; if (dist < bestd) { bestd = dist; bestpos = i; } biasdist = dist - ((bias [i]) >> (intbiasshift - netbiasshift)); if (biasdist < bestbiasd) { bestbiasd = biasdist; bestbiaspos = i; } betafreq = (freq [i] >> betashift); freq [i] -= betafreq; bias [i] += (betafreq << gammashift); } freq [bestpos] += beta; bias [bestpos] -= betagamma; return (bestbiaspos); } } }