UniversalViewer/Assets/Scripts/uGIF/LZWEncoder.cs

294 lines
7.3 KiB
C#
Raw Permalink Normal View History

2024-04-21 22:38:26 +08:00
using System;
using System.IO;
namespace uGIF
{
public class LZWEncoder
{
static readonly int EOF = -1;
byte[] pixAry;
int initCodeSize;
int curPixel;
// GIFCOMPR.C - GIF Image compression routines
//
// Lempel-Ziv compression based on 'compress'. GIF modifications by
// David Rowley (mgardi@watdcsu.waterloo.edu)
// General DEFINEs
static readonly int BITS = 12;
static readonly int HSIZE = 5003; // 80% occupancy
// GIF Image compression - modified 'compress'
//
// Based on: compress.c - File compression ala IEEE Computer, June 1984.
//
// By Authors: Spencer W. Thomas (decvax!harpo!utah-cs!utah-gr!thomas)
// Jim McKie (decvax!mcvax!jim)
// Steve Davies (decvax!vax135!petsd!peora!srd)
// Ken Turkowski (decvax!decwrl!turtlevax!ken)
// James A. Woods (decvax!ihnp4!ames!jaw)
// Joe Orost (decvax!vax135!petsd!joe)
int n_bits; // number of bits/code
int maxbits = BITS; // user settable max # bits/code
int maxcode; // maximum code, given n_bits
int maxmaxcode = 1 << BITS; // should NEVER generate this code
int[] htab = new int[HSIZE];
int[] codetab = new int[HSIZE];
int hsize = HSIZE; // for dynamic table sizing
int free_ent = 0; // first unused entry
// block compression parameters -- after all codes are used up,
// and compression rate changes, start over.
bool clear_flg = false;
// Algorithm: use open addressing double hashing (no chaining) on the
// prefix code / next character combination. We do a variant of Knuth's
// algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
// secondary probe. Here, the modular division first probe is gives way
// to a faster exclusive-or manipulation. Also do block compression with
// an adaptive reset, whereby the code table is cleared when the compression
// ratio decreases, but after the table fills. The variable-length output
// codes are re-sized at this point, and a special CLEAR code is generated
// for the decompressor. Late addition: construct the table according to
// file size for noticeable speed improvement on small files. Please direct
// questions about this implementation to ames!jaw.
int g_init_bits;
int ClearCode;
int EOFCode;
// output
//
// Output the given code.
// Inputs:
// code: A n_bits-bit integer. If == -1, then EOF. This assumes
// that n_bits =< wordsize - 1.
// Outputs:
// Outputs code to the file.
// Assumptions:
// Chars are 8 bits long.
// Algorithm:
// Maintain a BITS character long buffer (so that 8 codes will
// fit in it exactly). Use the VAX insv instruction to insert each
// code in turn. When the buffer fills up empty it and start over.
int cur_accum = 0;
int cur_bits = 0;
int[] masks =
{
0x0000,
0x0001,
0x0003,
0x0007,
0x000F,
0x001F,
0x003F,
0x007F,
0x00FF,
0x01FF,
0x03FF,
0x07FF,
0x0FFF,
0x1FFF,
0x3FFF,
0x7FFF,
0xFFFF };
// Number of characters so far in this 'packet'
int a_count;
// Define the storage for the packet accumulator
byte[] accum = new byte[256];
//----------------------------------------------------------------------------
public LZWEncoder (int width, int height, byte[] pixels, int color_depth)
{
pixAry = pixels;
initCodeSize = Math.Max (2, color_depth);
}
// Add a character to the end of the current packet, and if it is 254
// characters, flush the packet to disk.
void Add (byte c, Stream outs)
{
accum [a_count++] = c;
if (a_count >= 254)
Flush (outs);
}
// Clear out the hash table
// table clear for block compress
void ClearTable (Stream outs)
{
ResetCodeTable (hsize);
free_ent = ClearCode + 2;
clear_flg = true;
Output (ClearCode, outs);
}
// reset code table
void ResetCodeTable (int hsize)
{
for (int i = 0; i < hsize; ++i)
htab [i] = -1;
}
void Compress (int init_bits, Stream outs)
{
int fcode;
int i /* = 0 */;
int c;
int ent;
int disp;
int hsize_reg;
int hshift;
// Set up the globals: g_init_bits - initial number of bits
g_init_bits = init_bits;
// Set up the necessary values
clear_flg = false;
n_bits = g_init_bits;
maxcode = MaxCode (n_bits);
ClearCode = 1 << (init_bits - 1);
EOFCode = ClearCode + 1;
free_ent = ClearCode + 2;
a_count = 0; // clear packet
ent = NextPixel ();
hshift = 0;
for (fcode = hsize; fcode < 65536; fcode *= 2)
++hshift;
hshift = 8 - hshift; // set hash code range bound
hsize_reg = hsize;
ResetCodeTable (hsize_reg); // clear hash table
Output (ClearCode, outs);
outer_loop :
while ((c = NextPixel()) != EOF) {
fcode = (c << maxbits) + ent;
i = (c << hshift) ^ ent; // xor hashing
if (htab [i] == fcode) {
ent = codetab [i];
continue;
} else if (htab [i] >= 0) { // non-empty slot
disp = hsize_reg - i; // secondary hash (after G. Knott)
if (i == 0)
disp = 1;
do {
if ((i -= disp) < 0)
i += hsize_reg;
if (htab [i] == fcode) {
ent = codetab [i];
goto outer_loop;
}
} while (htab[i] >= 0);
}
Output (ent, outs);
ent = c;
if (free_ent < maxmaxcode) {
codetab [i] = free_ent++; // code -> hashtable
htab [i] = fcode;
} else
ClearTable (outs);
}
// Put out the final code.
Output (ent, outs);
Output (EOFCode, outs);
}
//----------------------------------------------------------------------------
public void Encode (Stream os)
{
os.WriteByte (Convert.ToByte (initCodeSize)); // write "initial code size" byte
curPixel = 0;
Compress (initCodeSize + 1, os); // compress and write the pixel data
os.WriteByte (0); // write block terminator
}
// Flush the packet to disk, and reset the accumulator
void Flush (Stream outs)
{
if (a_count > 0) {
outs.WriteByte (Convert.ToByte (a_count));
outs.Write (accum, 0, a_count);
a_count = 0;
}
}
int MaxCode (int n_bits)
{
return (1 << n_bits) - 1;
}
//----------------------------------------------------------------------------
// Return the next pixel from the image
//----------------------------------------------------------------------------
int NextPixel ()
{
if (curPixel == pixAry.Length)
return EOF;
curPixel++;
return pixAry [curPixel - 1] & 0xff;
}
void Output (int code, Stream outs)
{
cur_accum &= masks [cur_bits];
if (cur_bits > 0)
cur_accum |= (code << cur_bits);
else
cur_accum = code;
cur_bits += n_bits;
while (cur_bits >= 8) {
Add ((byte)(cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
// If the next entry is going to be too big for the code size,
// then increase it, if possible.
if (free_ent > maxcode || clear_flg) {
if (clear_flg) {
maxcode = MaxCode (n_bits = g_init_bits);
clear_flg = false;
} else {
++n_bits;
if (n_bits == maxbits)
maxcode = maxmaxcode;
else
maxcode = MaxCode (n_bits);
}
}
if (code == EOFCode) {
// At EOF, write the rest of the buffer.
while (cur_bits > 0) {
Add ((byte)(cur_accum & 0xff), outs);
cur_accum >>= 8;
cur_bits -= 8;
}
Flush (outs);
}
}
}
}